




 

Table 1. – Organization of variables in files 

Product Period Datasets Format File name example 
AMIP/DOE 
Reanalysis 2 

Year, 
6 hours 1 NetCDF pres.sfc.1979.nc 

pres.sfc.1980.nc 
MODIS L3  
Atmosphere 

Day, 
Day >600 HDF4 MOD08_D3.A2000061.051.2010273210218.hdf 

MOD08_D3.A2000062.051.2010273161753.hdf 

CFSR Month, 
1 hour 1 Grib2 ocnsst.l.gdas.198401.grb2 

ocnsst.l.gdas.198402.grb2 

MERRA Day, 
1..24 hrs 1..∞ HDF4 MERRA200.prod.assim.tavg1_2d_lnd_Nx. 

20000718.hdf 
Aura satellite, 
OMI radiometer 

Day, 
Day 14 HDF5 OMI-Aura_L3-OMSO2e_2004m1001_v003- 

011m0526t144250.he5 
 
Each product has its own coordinate system 

and can have different spatial resolution along lati-
tude and longitude (for example, 2/3°×1/2°). Thus, 
grid layout may be different in distinct products  

Besides the data, files store metadata. It in-
cludes actual data range, constants used for missing 
values and other important characteristics.  

Generating a time series for a grid cell re-
quires downloading all data files to the local hard 
drive and knowledge of many details of diverse file 
formats. This distracts a researcher from the prima-
ry scientific goals and delays results. 

Generating, storing and accessing 
time series 

Time series are generated from existing data 
in advance. Obtained time series are saved on a 
persistent storage for further reuse. Appropriate 
storage layout is used to enable immediate retrieval 
of a single time series for a given coordinate. 

Generation stage takes a significant amount 
of time but it is required only once per variable. 
Retrieving all data for a given period, file by file, 
takes the main part of time. 

Figure 4 gives the scheme of obtaining a 
time series for a single cell. On top is the time se-
ries of grids with 6 hour temporal resolution from 
the 1/Jan/2000 to 31/Dec/2006. Solid thin lines 
show the correspondence of each grid to the posi-
tion on the timeline.  

A larger grid on the left has the cell colored 
black. Its latitude and longitude coordinates are 
equal to lat and lon correspondingly. A time series 
for this cell is shown under the timeline.  

Time series are built for each pair of latitude 
and longitude coordinates (each grid cell). The 
temporal resolution of a time series is equal to the 
original resolution of the time series of grids (6 
hours in current case).  

  

 

 
Figure 4. – Obtaining a time series for a single grid cell 



 

The procedure iteratively queries Chronos-
Server [8] for the next grid and accumulates time 
series values taken from the obtained grid in a dedi-
cated in-memory data structure. In case of grid ab-
sence for a given date, the special constant analog-
ous to R “NA” is used to indicate the missing value. 
Thus, all time series will have NA for that date.  

Also, not all grid cells of remote sensing da-
ta may have values, for example due to clouds. This 
means that some values in a time series may be also 
equal to NA. 

A special time series storage format was de-
signed. It allows storing time series not only for the 
global grid and the complete available period but 
also for a specified region and a time interval. 

Time series data for a given region and time 
interval consist of an index and data file. Index file 
contains metadata. It is possible to have several 
pairs of index and data files for a single variable. 
This is convenient in case of generating time series 
in several steps by specifying different time inter-
vals and/or regions for each step. 

Figure 5 shows the data file structure for 
time series generated for a region. The boundaries 
of the region are: southern latitude equals to 30, 
northern latitude to 65. Analogously, western and 
eastern longitudes are 40 and 60 correspondingly. 
First, the time series are sorted on latitude coordi-
nates, then on longitude coordinates and are stored 
in file sequentially one after another. Time series 
within the same file have equal length. 

 

 
 

Figure 5. – The structure of time series data file 
 
In order to read a time series for grid cell 

with coordinates (lat, lon), the position P(lat, lon) 
of the first value of it is calculated as 
P(lat, lon) = ((lat − LATsouth) / LATstep) × L × С + 

((lon − LONwest) / LONstep) × C  
where L = (LONeast − LONwest) / LONstep + 1 (the 
number of time series for a single latitude), С = Ctb 
× 4 (data size in bytes of a single time series). 

Since all values of a time series are located 
sequentially, they can be read by a single call to a 

file system. This feature, coupled with the absence 
of the need to open thousands of files to obtain an 
individual time series, yields the significant accele-
ration and the possibility to reuse time series gener-
ated once and always readily available further. 

If there are several index and data file pairs 
for a variable, all of them are read. The retrieved 
continuous fragments of the time series obtained 
from the separate files are assembled into a larger 
single time series. The possibility of fragments hav-
ing overlapping periods is also considered. In this 
case, only a single value is used for the same date. 

Time series are directly available from R. 
Special R package was developed for this purpose. 
To load a time series into R, it is enough to call a 
single function providing the variable name and 
grid cell coordinates as arguments.  

A grid cell is referenced by the latitude-
longitude coordinates of its southwestern corner or 
lower-left corner when the map is rotated so that 
south is at the bottom of the map and the west is on 
its left. For example, reading a time series for ozone 
total column amount measured by OMI radiometer 
(Aura satellite) over a grid cell within Donetsk Re-
gion (Ukraine) (fig. 6).  

 
t <- readTransposeData(w, 

"OMI.omso2e.ColumnAmountO3", 
48.25, 37.75) 

Figure 6. – Reading time series for grid cell with 
coordinates (48.25, 37.75) 

 
In this case the coordinates are given with 

0.25° step since OMI level 3 data global regular 
grid has 0.25°×0.25° spatial resolution. The func-
tion returns R data frame with three columns: unix 
time stamp (long type), date (string type) and the 
requested variable value (float) which in this case 
has temporal resolution equal to one day. There are 
2820 values of the variable for the available period 
(01/Oct/2004 to 20/Jun/2012) (fig. 7). 

 
                time_unix            date         value 
1          1.096589e+12    2004-10-01      NA 
2          1.096675e+12    2004-10-02      NA 
… 
2818    1.339978e+12    2012-06-18   300.6 
2819    1.340064e+12    2012-06-19      NA 
2820    1.340150e+12    2012-06-20   307.7 

Figure 7. – A fragment of a time series (R data 
frame) for total column ozone over grid cell with 
coordinates (48.25, 37.75) 

 
The frame can be converted to any appropri-

ate R data type required by other R package so that 
the functions from that package can be applied to 
the time series data. Thus, the direct availability of 
a time series within R equips a researcher with a 
large variety of analysis opportunities and tools. 



 

Case studies 

The paper concentrates on air quality remote 
sensing data as an example. The goal is to demon-
strate the facilitation and acceleration of remote 
sensing data analysis as well as to give a starting 
point for suggesting many research options related 
to remote sensing time series data. 

Today, for decision support environmental 
protection agencies mostly use air quality data that 
comes from ground stations. Stations deliver point 
measurements of pollutant concentrations.  

Remote sensing data provide gas concentra-
tions with high spatial and temporal resolution. 
However, these data are not widely used for deci-
sion support by the agencies due to high complexity 
of accessing to remote sensing data as well as pro-
hibitively labor-intensive analysis costs.  

The data used for case studies with their cha-
racteristics are given in table 2. The first column 
gives the variable name. Sulfur dioxide and aerosol 
were retrieved from measurements of Aura (OMI 
radiometer) and Terra (MODIS radiometer) satel-
lites. Two different ozone data belong to both satel-
lites to demonstrate intercomparison possibilities. 
Meteorological parameters, wind speed and direc-
tion were taken from the MERRA reanalysis.  

All data are available at regular latitude-

longitude grids. To give a feeling of the spatial res-
olution of the grids, the sizes of their cells are given 
in kilometers for ~ 49±4 northern latitude.  

MODIS products of level 2 have spatial res-
olution of 5 km for ozone and 10 km for aerosol 
products. Level 3 MODIS products contain statis-
tics for pixels that fall into 1.0°×1.0° cells of regu-
lar latitude-longitude grid. This paper takes maxim-
al value among all pixels that fall into 1.0°×1.0° 
cell. This is due to assumption that if the cell covers 
a city or an industrial region, mainly anthropogenic 
factors may cause the maximal level of the aerosol 
reported for that cell. 

Sulfur dioxide column measurements are 
taken for total columns within planetary boundary 
layer. Sulfur dioxide and ozone concentrations are 
given in Dobson Units (DU), 1 DU = 2.69 × 1016 
molecules/cm2. Aerosol optical thickness is dimen-
sionless which values fall into -0.05..+5 interval.  

Wind speed and direction are for the height 
of 50 meters above surface. Hourly data were ag-
gregated to daily interval by selecting and averag-
ing values from 9.00 to 12.00 of local Ukrainian 
time (UTC+02). 

Time series were generated for each grid cell 
(for satellite data) and node (for reanalysis). All 
data taken are approximately until June 2012. 

Table 2. – Data used for case studies 

Variable Radiometer 
or reanalysis 

Grid 
resolution 

Cell size for 
Ukraine, km 

Temporal 
 resolution 

Starting 
date 

Units 

Total column ozone (O3) OMI 0.25°×0.25° 27.5 × 18 1 day 01.10.2004 DU 
Sulfur dioxide (SO2) DU 
Total column ozone (O3) MODIS 1.0°×1.0° 110 × 72 1 day 02.03.2000 DU 
Aerosol optical thickness  - 
Wind speed and direction MERRA 1/2°×2/3° 55 × 48 1 hour 01.01.1979 m/s 

  

1 
2 
3 
 
4 
 
5 
6 
 
7 
8 
 
9 
10 
11 
12 
13 
 
14 
15 

library(RWikience) 
w <- WikienceConnect() 
t <- readTransposeData(w, "Modis L3 Atmosphere. 
              Land.Optical_Depth_Land_And_Ocean.Maximum", 41, 12) 
t_avg <- aggregate(t["value"], format(t["date"], "%Y-%m"), 
                                                 mean, na.rm = TRUE) 
t_avg$date <- seq(min(t$date), max(t$date), length = nrow(t_avg)) 
plot(t_avg$date, t_avg$value, type="l") 
 
ids <- which (t$value <= 2) 
plot(as.factor(format(t$date[ids], "%m")), t$value[ids]) 
 
library(zoo) 
t_avg.trim <- na.trim(t_avg)  
t_avg.trim$value <- na.approx(t_avg$value) 
t_avg.ts <- ts(t_avg.trim[,2], start=c(2000,3), freq=12) 
plot(stl(t_avg.ts, s.window="periodic", robust=TRUE)) 
 
library(openair) 
calendarPlot(t, "value", 2004) 

Figure 8. – R code for aerosol optical thickness trend research over Rome, Italy 



 

All code that is provided in the paper can be 
executed in RStudio [9] or RevolutionR [10] pro-
viding that Climate Wikience [7] is launched on the 
same computer and the required R packages are 
installed. The package ‘RWikience’ will be freely 
available soon. However, in release version the 
signatures of its functions might change. 

Monthly aerosol optical thickness over 
Rome (Italy) with MODIS grid cell coordinates (41, 
12) is presented on fig. 9. Monthly means used to 
avoid overplotting with too many daily values. 

It was experimentally found that Rome cell 
has one of the lowest cloud cover rates among other 
cells in Europe (thus, containing much less missing 
values in its time series than other cells). In addi-
tion, it has very interesting trends.  

Taken MODIS grid cell (referred simply as 
Rome, Italy) also covers a part of nearby Tyrrhe-
nian Sea. Thus, the diagrams entitled as being for 

Rome may also reflect other natural patterns.  
Some winter months still contain only miss-

ing values mainly due to clouds. This results in 
gaps in time series. 

For drawing plot on fig. 4 the ‘RWikience’ 
package is loaded (fig. 8, line 1) and a connection 
to the running instance of Climate Wikience is es-
tablished (line 2).  

To obtain a time series, a hierarchical name 
of a required variable and grid cell coordinates must 
be supplied (line 3). All variables from remote 
sensing and reanalysis products are categorized in 
Climate Wikience and organized into a hierarchical 
namespace. This simplifies navigation in available 
variables and location of the required one. 

Monthly means are loaded into R data frame 
at line 4. A trick (line 5) is required before using R 
‘plot’ function (line 6) to visualize resulting data 
from ‘aggregate’ function. 

 

 
 

Figure 9. –  Monthly aerosol optical thickness over Rome, Italy 
 
An apparent feature of many remote sensing 

data variables is seasonality. It is possible to create 
a box plot for variable values in a time series for 
each month (considering daily values for months 
from all available years) to find out the typical sea-
sonal character of a variable. Values higher than 2.0 
were excluded before building the plot (fig. 10). 

Although the fact of a seasonal cycle for a 
variable is well known, it is different in distinct 
places on Earth. Thus, having a time series for a 
cell or an area with precise coordinates, a researcher 
can have a better feeling of the seasonal pattern 
inherent exactly to the region under investigation. 

As it can be seen from the plot (fig. 10), 
maximum aerosol concentrations over Rome are 
usually reached at summer months and minimum at 
winter months. 

The plot on figure 10 was built simply with 
two additional lines of code (7 and 8). 

A more sophisticated approach is to apply a 
seasonal-trend decomposition based on loess [11]. 
However, due to cloudy days during winters of 
2000-2001 and 2007-2008, the time series does not 

have some values. Missing values can be linearly 
interpolated from neighborhood data (line 11).  

As it was noted earlier, time series data can 
be easily converted to types required by other pack-
ages to use their functions. The time series was 
converted into ‘ts’ type (line 12). A robust “stl” 
procedure with periodic time window was used 
(line 13) to construct plot on figure 11. 

The monthly time series of aerosol optical 
thickness over Rome with linearly interpolated 
missing values is shown at the very top of figure 
11. The seasonal component with yearly periodicity 
is shown next.  

The most interesting component - the ex-
tracted trend - reveals obvious decline of aerosol 
concentration over Rome in 1.6 times (from about 
0.40 to 0.25) during the last decade. 

The remainder indicates outliers. Each event 
might be studied in detail and explained separately.  

This insightful study can be easily applied to 
any city. Since query for a time series happens in a 
split of a second, the result is readily obtained. 



 

 
 

Figure 10. –  Box plot for each month, aerosol optical thickness, Rome, Italy 
 

 
 

Figure 11. –  Seasonal-trend decomposition of aerosol optical thickness over Rome, Italy 



 

 
 

Figure 12. –  Daily aerosol optical thickness over Rome (Italy) during 2004 (Terra MODIS) 
 

Some very effective functions are imple-
mented in ‘openair’ package [12, 13]. They facili-
tate the detailed study of a variable dynamics.  

For example, it is possible to plot aerosol 
optical thickness for each day in a calendar-like 
style (fig. 12). It was created by a single line 15 
from figure 8. Days which are not shaded contain 
missing values.  

 

 
 

Figure 13. –  Wind rose for a single MERRA node 
(482⁄3, 24) using daily data for 2000-2012 

 
 

Recall that the figure 12 shows the variable 
value for a single grid cell (not averaged for several 
cells) enabling exact study of the desired region. 

Many insights can be gained using hourly or 
daily time series of wind speed and direction. For 
example, a wind rose for any place on the globe can 
be built in a split of a second (fig. 13). 

Even more can be achieved by fusing data 
from different products.  

Time series of meteorological parameters 
and air pollutant for the same grid cell make possi-
ble to determine the dependencies of the latter on 
the former. This enables to detect the most liable to 
pollution areas by nearby anthropogenic objects as 
well as the pollutant spread distance from them. 

Package ‘openair’ contains ‘polarPlot’ func-
tion to construct polar diagrams of the dependence 
of a pollutant from wind speed and direction.  

The polar plot (fig. 14a) shows the SO2 con-
tent in the total column of planetary boundary layer 
over the cell with coordinates (49.25, 24.25) de-
pending on the wind speed and direction at the node 
with coordinates (482/3, 24) of the MERRA grid. 

The plot was created using all data from the 
available period. Values of SO2 content are aver-
aged for the same wind speed and direction. 

 



 

 (a)        (b) 
 

Figure 14. –  Influence of (a) Burshtynska and (b) Slovyanska thermal power stations  
on SO2 air pollution levels at nearby cells depending on wind speed and direction 

 
The center of the pollution polar plot 

represents a wind speed of zero, which increases 
radially outward. There is evidence that maximal 
SO2 values are observed during southeastern wind 
with speed 2-4 m/s while minimal SO2 values dur-
ing northwestern wind.  

The cell with coordinates (49.25, 24.25) is 
on the northwest from Burstynska thermal power 
station - one of the major SO2 emitters in Ukraine. 
Its coordinates approximately are (49.20, 24.66). 

The same plot for MERRA node with coor-
dinates (49, 38) and SO2 grid cell with coordinates 
(49, 38) is shown on figure 14b.  

The cell (49, 38) is on the northeast from 
Slovyanska thermal power station with coordinates 
(48.87, 37.76) approximately. 

Although this visualization technique was 
developed before this publication, in this paper it is 
applied to climate reanalysis and remote sensing 
data for the first time.  

 

 

Figure 15. –  Time series of SO2 concentration for Donetsk, Ukraine (48, 37.5) during 2004-2012 
 

 
 

Figure 16. –  Representing time series from fig. 15 in radial form (radius – value, angle – time) 



 

Other packages as well offer a large variety 
of exploratory data analysis techniques [14, 15]. 

The techniques used so far allow to investi-
gate either spatial or temporal features of data but 
not both of them simultaneously.  

It is also possible to plot a time series in 
radial, so called “star” form. Figure 15 shows a 
single time series for a cell inside Donetsk region 
while figure 16 represents it in radial form.  

To show the dynamics of a variable for a 
whole region, at the center of each cell within that 
region stars of their time series are plotted. 

This provides a good feeling of data charac-
ter, allows comparing different subareas, notice 
data peculiarities and deficiencies at a glance. 

This is only possible if we have a time series 
for each grid cell as proposed in this paper. 

 

 
 

Figure 17. – Time series of SO2 concentrations dur-
ing 2004-2012 for each grid cell (18 × 27.5 km) for 

Donetsk region (fig. 15), Ukraine 
 

Empowered by the RWikience package, it is 
also quite easy to carry out quick intercomparison 
of the values of the same variable from different 
remote sensing products. It is very important as it 
gives the idea of how well the algorithm or radi-
ometer performs in different situations. It may also 
help to choose the product that suits best for a par-
ticular purpose. 

Since ozone measurements from MODIS 
and OMI radiometer have different spatial resolu-
tion, they must be compared within a common area.  

For example, the region with most northwes-
tern (48, 36) and most southeastern (47, 37) corner 
can be taken since it contains a single cell for 
MODIS grid (1.0°×1.0°) that fully covers 16 cells 
of OMI grid (0.25°×0.25°) (fig. 15). 

First, all time series for grid cells within the 
selected region must be averaged to obtain a single 
time series. For MODIS there is only 1 cell (no 
averaging is required) while for OMI there are 16 
cells (from which a single time is obtained). 

While averaging several time series into a 
single one, a special consideration must be taken on 
dates for which one or several series contain miss-
ing values. In this case, an average for that date is 
calculated based only on valid values. 

Figure 18 gives a scatter plot for two result-
ing time series. The MODIS values are depicted 
along abscissa while the OMI values are along or-
dinate. Only dates for which both time series do not 
have missing values are considered.  
 

 
 

Figure 18. – MODIS versus OMI total column 
ozone for a subarea of Donetsk region, Ukraine 

 
There is a noticeable agreement between dif-

ferent satellites in spite of MODIS product used 
reports maximum ozone value for a cell while OMI 
gives an average.  

Related work 

To date, the only system capable to generate 
time series for Earth remote sensing data is Gi-
ovanni [16]. Its main disadvantages are: 

• it generates a time series upon user request 
which requires a considerable amount of time; 

• only a single resultant time series for a se-
lected region can be ordered making impossible to 
carry out precise investigation of territories which 
areas are comparable to an area of a single cell; 

• the output is presented as a file of a given 
format (text, binary, etc.) for manual download via 



 

a web interface. This makes a researcher to distract 
on managing many files (in case of studying several 
territories) on a destination personal computer and 
increases data to result time; 

• only a subset of variables from only NASA 
datasets are provided and most of which are availa-
ble at reduced time/space resolution. 

Representation of Earth remote sensing data 
as time series partially resembles column-wise sto-
rage layout used in database systems. While at the 
first sight it is analogous to row-wise approach, 
significant performance benefits could be obtained 
for certain workload patterns by utilizing dedicated 
column-oriented processing techniques [17]. 

Conclusions 

The paper proposes an alternative view of 
the retrospective georefernced data. They are 
represented as a collection of time series instead of 
temporal sequences of grids.  

Time series have the same temporal resolu-
tion as original sequence of grids and are available 
for each grid cell. This preserves the finest possible 
spatial and temporal analysis precision. 

Corresponding storage technique and R 
package have been developed to enable immediate 
retrieval of a time series for any grid cell and its 
direct availability from R analysis environment. 
The R package enables to benefit from over 4000 
packages available from R environment to date. 

The proposed alternative look at data repre-
sentation and their organization greatly facilitate the 
application of existing time series analysis tech-
niques to Earth remote sensing data. It is far not a 
trivial task without having time series for each grid 
cell and quick access to them.  

The proposed representation may also alter 
the perception of the data by a researcher and may 
stimulate the emergence of Earth remote sensing 
data use cases not considered before. 

The author believes that this work will sug-
gest further exploration of the potential and oppor-
tunities that give the representation of Earth remote 
sensing and similar data as time series. 
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