
ChronosServer: fast in-situ processing of large multi-

dimensional arrays with command line tools

Ramon Antonio Rodriges Zalipynis

National Research University Higher School of Economics, Moscow, Russia

rodriges@wikience.org

Abstract. Explosive growth of raster data volumes in numerical simulations,

remote sensing and other fields stimulate the development of new efficient data

processing techniques. For example, in-situ approach queries data in diverse file

formats avoiding time-consuming import phase. However, after data are read

from file, their further processing always takes place with code developed al-

most from scratch. Standalone command line tools are one of the most popular

ways for in-situ processing of raster files. Decades of development and feed-

back resulted in numerous feature-rich, elaborate, free and quality-assured tools

optimized mostly for a single machine. The paper reports current development

state and first results on performance evaluation of ChronosServer – distributed

system partially delegating in-situ raster data processing to external tools. The

new delegation approach is anticipated to readily provide rich collection of ras-

ter operations at scale. ChronosServer already outperforms state-of-the-art array

DBMS on single machine up to 193x.

Keywords: big raster data, distributed processing, command line tools, delega-

tion approach.

1 Introduction

Raster is the primary data type in a broad range of subject domains including Earth

science, astronomy, geology, remote sensing and other fields experiencing tremen-

dous growth of data volumes. For example, DigitalGlobe – the largest commercial

satellite imagery provider, collects 70 terabytes of imagery on an average day with

their constellation of six large satellites [1].

Traditionally raster data are stored in files, not in databases. The European Cen-

tre for Medium-Range Weather Forecasts (ECMWF) has alone accumulated 137.5

million files sized 52.7 petabytes in total [2]. This file-centric model resulted in a

broad set of raster file formats highly optimized for a particular purpose and subject

domain. For example, GeoTIFF represents an effort by over 160 different remote

sensing, GIS (Geographic Information System), cartographic, and surveying related

companies and organizations to establish interchange format for georeferenced raster

imagery [3].

The corresponding software has long being developed to process raster data in

those file formats. Many tools are free, popular and have large user communities that

are very accustomed to them. For example, ImageMagic is under development since

1987 [4], NetCDF common operators (NCO), a set of tools for multidimensional ar-

rays, since about 1995 [5]; Orfeo ToolBox – remote sensing imagery processor now

represents over 464,000 lines of code made by 43 contributors [6]. Many tools take

advantage of multicore CPUs (e.g., OpenMP), but mostly work on a single machine.

In-situ distributed raster data processing has recently gained increased attention

due to explosive growth of raster data volumes in diverse file formats. However, al-

ready existing stable and multifunctional tools are largely ignored in this research

trend. Thus, raster operations are re-implemented almost from scratch delaying emer-

gence of a mature in-situ distributed raster DBMS.

This paper describes the prototype extension of ChronosServer [7, 8] leveraging

existing command line tools for in-situ raster data processing on a computer cluster of

commodity hardware. Unlike current systems, it is easier and faster to equip

ChronosServer with wide variety of raster operations due to new delegation approach.

Thus, it is anticipated that it is possible to quickly develop new distributed file-based

raster DBMS with rich functionality and exceptional performance.

2 In-situ raster data processing

In-database data storage (in-db, import-then-query) requires data to be converted (im-

ported) to internal database format before any queries on the data are possible. Out-

of-database (out-db, in-situ, file-based, native) approach operates on data in their

original (native) file formats residing in a standard filesystem without any prior for-

mat conversions.

2.1 State-of-the-art

PostgreSQL extensions PostGIS [9] and RasDaMan [10] work on single machine and

allow registering out-database raster data in file system in their native formats. Enter-

prise RasDaMan version claims to be in-situ enabled and distributed, but is not freely

available [11]. PostGIS has poor performance on multidimensional arrays (e.g.

NetCDF, HDF or Grib formats [12]). No performance evaluation has been ever pub-

lished for enterprise RasDaMan. SAGA [13] executes only distributed aggregation

queries over data in HDF format. SWAMP [14] accepts shell scripts with NCO and

parallelizes their execution. Hadoop extensions SciHadoop [15] and SciMATE [16]

were never released publicly. They implement drivers reading Hadoop DFS chunks as

if they are in HDF or NetCDF formats. Galileo [17] indexes geospatial data with dis-

tributed geo-hash. SWAMP launches command line tools but focuses on NCO and

requires scripts looping over files with explicitly specified file names. The proposed

approach is universally applicable to any tool and abstracts from “file” notion at all.

Commercial ArcGIS ImageServer [18] claims in-situ raster processing with custom

implementation of raster operations. However, in a clustered deployment scenario all

cluster nodes are recommended to hold copies of the same data or fetch data from a

centralized storage upon request what negatively impacts scalability. Commercial

Oracle Spatial [19] does not provide in-situ raster processing [20]. Open source

SciDB is specially designed for distributed processing of multidimensional arrays

[21]. However, it does not operate in-situ and imports raster data only converted to

CSV format – very time-consuming and complex undertaking. Moreover, SciDB

lacks even core raster operations like interpolation which makes it an immature and

not widely used product [22]. Intel released open source TileDB on 04 Apr. 2016. It is

yet neither distributed nor in-situ enabled [23].

Hadoop [24] and experimental SciDB streaming [25] allow launching a com-

mand line tool, feed text or binary data into its standard input and ingesting its stand-

ard output. Note two time-consuming data conversion phases in this case: data import

into internal database format and their conversion to other representation to be able to

feed to external software. The proposed approach directly submits files to external

executables without additional data conversion steps.

SciQL was an effort to extend MonetDB with functionality for processing multi-

dimensional arrays [26]. However, it has not yet finished nor its active development is

seen so far. Also, SciQL does not provide in-situ raster processing.

2.2 In-situ approach benefits

This section collects in one place advantages and challenges of in-situ approach that

are quite scattered in the published literature.

 Avoid inefficient neighborhood. Traditionally, BLOB (Binary Large OBject) data

type served for in-db raster storage (PostGIS, RasDaMan). Physical layouts where

raster data are close to other data types are quite inefficient since the former are

generally much larger than the latter.

 Leverage powerful storage capabilities. Some raster file formats support chunking,

compression, multidimensional arrays, bands, diverse data types, hierarchical

namespaces and metadata. These techniques are fundamental for raster storage;

their implementation for an emerging in-db storage engine results in yet another

raster file format.

 Avoid conversion bottleneck. In mission-critical applications it is important to be

able to analyze the data before their new portion arrives or a certain event happens.

In some cases the conversion time may take longer than the analysis itself. The da-

ta arrival rate and their large volumes may introduce prohibitively high conversion

overheads and, thus, operational failure.

 Avoid additional space usage. Most data owners never delete source files after any

kind of format conversions including database import. There are numerous reasons

for this including unanticipated tasks that may arise in future that are more conven-

ient, faster, easier or possible to perform on the original files rather than their con-

verted counterparts. Storing both source data and their in-db copies requires addi-

tional space that may be saved by in-situ approach.

 Reduce DBMS dependence. It is easier to migrate to other DBMS keeping data in a

widely adopted storage format independent from a DBMS vendor.

 Leverage other software tools (this paper). Out-db raster data in their native for-

mats remain accessible by any other software which was inherently designed to

process file-based data.

Key difficulties lie in the ability to perform the same set of operations on data in dif-

ferent file formats. Three data models are most widely used that allow abstracting

from file format: Unidata CDM, GDAL Data Model, ISO 19123 (not cited due to

space constraints). Most existing command line tools use those models and, thus, are

capable to handle data in diverse raster file formats.

3 ChronosServer architecture

3.1 Raster data model: abstracting from files, their locations and formats

This paper focuses on climate reanalysis and Earth remote sensing global gridded

raster data represented as multidimensional arrays and usually stored in NetCDF, Grib

and HDF file formats. For example, AMIP/DOE Reanalysis 2 (R2) spans several

decades, from 01.01.1979 to current date with 6 hour time interval and contains over

80 variables [27]. The grid resolution is usually 2.5° × 2.5°. Global grids for each

variable are stored in a sequence of separate files partitioned by time. File names con-

tain variable codename, e.g. files with surface pressure are named pres.sfc.1979.nc,

pres.sfc.1980.nc, …, pres.sfc.2015.nc. Where “pres.sfc” denotes surface pressure,

1979 is year, “.nc” is NetCDF file extension. Usually file naming is much more com-

plex (e.g., compare to AIRS/AMSU daily file name for CO2 satellite data:

AIRS.2004.08.01.L3.CO2Std001.v5.4.12.70.X09264193058.hdf). Note, that the data

are usually already split by files by data providers.

ChronosServer distributes files among cluster nodes without changing their

names and formats. Any file is always located as a whole on a machine in contrast to

parallel or distributed file systems. It introduces a data model to work with grids, not

files to abstract from “file” notion, file naming, their locations, formats and other

details that are unique to every dataset and not relevant for data analysis. Chronos-

Server dataset namespace is hierarchical. For example, “r2.pressure.surface” refers to

surface pressure of R2 reanalysis. ChronosServer provides SQL-like syntax for sub-

setting grids. For example, “SELECT DATA FROM r2.pressure.surface WHERE

TIME_INTERVAL = 01.01.2004 00:00 - 01.01.2006 00:00 AND REGION = (45, 60,

50, 70)” returns time series of R2 surface pressure in the specified time interval and

region between 45°S – 50°N and 60°W – 70°E. The query execution may involve

several cluster nodes. Any grid or time series from any dataset may be extracted with

the same syntax regardless of original file format, file split policy and other details.

3.2 Cluster orchestration

ChronosServer cluster consists of workers launched at each node and a single gate at

a dedicated machine. Gate receives client queries and coordinates workers responsible

for data storage and processing. All workers have the same hierarchy of data directo-

ries on their local filesystems. A worker stores only a subset of all dataset files and

only a portion of the whole namespace relevant to the data it possesses. A file may be

replicated on several workers for fault tolerance and load balancing. It is not required

to keep all workers up and running for the whole system to be operational.

The gate is unaware of file locations until a worker reports them to it. This is done

for better scalability and fault tolerance. Upon startup workers connect to gate and

receive the list of all available datasets and their file naming rules. Workers scan their

local filesystems to discover datasets and their time intervals by parsing dataset file

names. Workers transmit to gate the list of time intervals for each dataset they store.

Gate keeps this information in worker pool – in-memory data structure used during

query planning that maps time intervals to their respective owners (workers).

4 New delegation approach

4.1 ChronosServer raster data processing commands and their distributed

execution

ChronosServer syntax of a raster data processing command is the same as launching a

tool from a command line. Command names coincide with names of existing com-

mand line tools. ChronosServer command options have the same meaning and names

as for the tool but without options related to file names or paths. Commands and tools

also support options with long names having the same meaning.

ncatted [-a ...] [--bfr sz] [-D nco_dbg_lvl] [--glb ...] [-h]

 [--hdr_pad nbr] [-l path] [-O] [-o out.nc] [-p path] [-R]

 [-r] [-t] in.nc [[out.nc]]

-a, variable_name,mode,attribute_type,attribute_value

 mode = a,c,d,m,o (append, create, delete, modify, overwrite)

 att_typ = f,d,l/i,s,c,b (float, double, long, short, char, byte)

 --bfr_sz, --buffer_size sz Buffer size to open files with

-D, --dbg_lvl, --debug-level lvl Debug-level is lvl

 --glb nm=val Global attribute to add

-h, --hst, Do not append to "history" global attribute

 --hdr_pad Pad output header with nbr bytes

-l, --lcl Local storage path for remotely-retrieved files

-o, out.nc Output file name (or use last argument)

-O, --ovr Overwrite existing output file, if any

-p, --path path Path prefix for all input filenames

-R, --rtn Retain remotely-retrieved files after use

-r, --revision Compile-time configuration and program version

-t, --typ_mch, Type-match attribute edits

in.nc [[out.nc]] Input file name [[Output file name]]

Fig. 1. Parameters of the NCO ncatted tool (all listed) and Chronos ncatted command (in bold)

For example, NCO consists of several standalone command line tools: ncap2 (Arith-

metic Processor v.2), ncks (Kitchen Sink), ncatted (Attribute Editor – metadata man-

ager, Fig. 1), etc. [28, 29]. Metadata are crucial component of any raster data.

NetCDF and many other formats store metadata as attributes (key-value pairs). For

example, attribute named “_FillValue” holds a constant used to mark raster cells with

missing values (e.g., -9999).

By default, command is applied to the whole available dataset time interval and

spatial coverage. They may be restricted by “select” query with alias dataset name

specification. New virtual dataset will contain subset of the original dataset. Its name

(alias) may be used in the subsequent commands. It is helpful to test a series of

commands on a dataset sample to check hypotheses about the anticipated results be-

fore submitting large-scale query involving large data volumes to save time.

For example, ChronosServer command for “_FillValue” attribute deletion from

dataset “r2.pressure.surface” is “ncatted -a _FillValue,r2.pressure.surface,d,,”. Instead

of “variable_name” – the term specific for NetCDF format, ChronosServer ncatted

accepts a dataset name to be independent of a concrete format. Usually the same at-

tributes are duplicated in all files of a dataset.

The gate receives and parses command line options, verifies their correctness and

absence of malicious instructions since they are passed to operating system shell. The

dataset or its subset is locked for reading/writing depending on the command. Several

commands may work concurrently if they do not block each other. Gate selects work-

ers on which dataset files with the required time/space intervals are located and sends

them the modified command (see below). Workers complement command line with

full paths to dataset files according to time and space limitations and launch the tool

on each file.

In the simple case above, ChronosServer invokes several instances of the NCO

ncatted tool on the cluster nodes where at least one dataset file is located

(pres.sfc.1979.nc, …, pres.sfc.2015.nc). The execution command line for file

pres.sfc.1979.nc is “<path to ncatted.exe> -a missing_value,pres,d,, <data path>\

pres.sfc.1979.nc”. The file path and “pres” were automatically put by worker and gate

correspondingly. The latter is the NetCDF variable name that stores R2 surface pres-

sure (NetCDF3 format does not have hierarchical namespace and stores data in struc-

tures called “variables”).

Workers also collect standard output of the tool which is sent to gate after its com-

pletion. Running tool on a different cluster node in case of a hardware failure is under

development. Gate reports to the user once it receives success messages from all

workers involved in the command execution. Report contains the merged standard

outputs from each run of the tool and total elapsed time.

4.2 Distributed apply-combine-finally execution scheme (under development)

Raster operations can be broadly classified as global (involve all data), local (pixel-

wise), focal (cell values from a rectangular window are required to compute new cell

value), zonal (same as focal but spatial region is defined by a function) [30]. Thus,

some operations cannot be completed autonomously using data on a single cluster

node. For example, R2 data interpolation for 1980 year from 6 to 3 hour time step

requires grids for December 1979 and January 1981. Also, computation of maximum

mean winter pressure involves all files potentially located on different cluster nodes.

In this case, user specifies commands: APPLY command1 INTERVALS intervals

COMBINE command2 FINALLY command3. ChronosServer ensures that files on

each involved node contain data in given temporal and spatial intervals (e.g., in case

of winter means, there should be nodes with data for all winter months for at least two

consecutive years: 1980-1981, 1981-1982, 1982-1983, etc. to be able to compute the

mean). This may require data movement between cluster nodes. After the intervals

requirement is met, command1 is executed autonomously on the data intervals on

corresponding cluster nodes. Since some nodes may have several disjoint intervals,

their intermediate results may be combined on the same node to reduce network traf-

fic with command2 if it is possible (e.g. compute maximum of the means of intervals

1980-1981 and 1982-1983 that happened to reside on the same node). All results are

gathered on a single node and command3 is applied to obtain final result (e.g., find

maximum of means or maximums of maximums if combine phase was applied).

Unlike existing schemes [31, 32], the proposed distributed execution scheme takes

into account peculiarities inherent to raster operations, geospatial data and Chronos-

Server file-based storage model. For example, respective intervals must be specified

to guarantee the raster operation (command1) is possible to accomplish within a sin-

gle node. It is widely recognized that numerous data processing tasks are much easier

to parallelize once actions are expressed in functional style, not “for” loops.

4.3 Benefits of the proposed delegation approach

While in-situ approach leverages benefits of already existing sophisticated file for-

mats, delegation approach leverages benefits of already existing standalone command

line tools.

 Avoid learning new language. ChronosServer provides command line syntax that

is well-known to every console user instead of a new SQL dialect.

 Steep learning curve. Users work with ChronosServer as if with console tools they

have accustomed to with only minor changes to already familiar tools’ options.

 Documentation reuse. Most of the tool’s documentation is applicable to the corre-

sponding ChronosServer command due to exactly the same meaning and behavior.

 Output conformance. Output files are formatted as if a tool was launched manually.

 Language independence. ChronosServer may use tools written in any program-

ming language.

 Community support. Bugs in tools are fixed by their developers as well as new

functionality added, usage suggestions via mail lists are obtained regardless of

ChronosServer context.

 Zero-knowledge development (0-know dev.). Developers of existing and emerging

tools do not have to know anything about ChronosServer in order the tool could be

used in ChronosServer.

The main difficulty of the proposed approach lies in the correct specification of the

“intervals”, “combine” and “finally” clauses. Meta-commands are a possible simplifi-

cation of the problem. They consist of a single command line which translates to pre-

defined apply-combine-finally clauses.

5 Performance evaluation

To date, the only freely available distributed raster DBMS is SciDB, not operating in-

situ. It lacks many core raster operations. Thus, only the performance of some basic

ChronosServer and SciDB raster operations are compared. It is of special interest to

evaluate ChronosServer against SciDB since the latter is currently being most actively

popularized among similar DBMS at top journals and conferences [33–35].

Test of source data volume comprised only 100.55 MB in NetCDF3 format since it

is impossible to import large data volumes into SciDB in a reasonable time frame

(section 5.2). In addition, experiments were carried out on a single machine for two

reasons. First, raster operations being evaluated have linear scalability. Increasing

machine number by a factor of N should roughly increase the performance also by N.

Second, unlike ChronosServer, SciDB cluster deployment is very labor-intensive.

Comparison of both systems running on computer cluster is left for future work.

However, small test data volume and single machine turned out to be sufficient for

representative results (Table 1). Table 1 summarizes experimental results while de-

tails are given in following subsections.

Table 1. ChronosServer and SciDB performance comparison

Operation

Execution time, seconds Ratio, SciDB /

ChronosServer

SciDB
ChronosServer

Cold Hot Cold Hot

Data import 720.13 19.82 7.96 36.33 90.47

Max 13.46 4.43 3.10 3.04 4.34

Min 12.87 4.71 3.33 2.73 3.86

Average 21.42 4.71 3.23 4.55 6.63

Wind speed calc. 25.75 3.50 2.10 7.36 12.26

Chunk 100×20×16 56.19 1.68 0.374 33.45 150.24

Chunk 10×10×8 222.11 1.98 1.15 112.18 193.14

5.1 Test raster data and experimental setup

Eastward (U-wind) and northward (V-wind) wind speed (Fig. 2) at 10 meters above

surface from NCEP/DOE AMIP-II Reanalysis (R2) were used for experiments [27].

These are 6-hourly forecast data (4-times daily values at 00.00, 06.00, 12.00 and

18.00). Data are 3-dimensional on 94 latitudes × 192 longitudes Gaussian grid in

NetCDF3 format. Dataset does not contain missing values. Single file is approximate-

ly 50.2 GB; total data volume is 3.63 GB for the whole available time interval 1979 –

2015. Due to SciDB limitations (section 5.2), only data for 1979 year were used

(about 100.55 MB as mentioned earlier).

Both ChronosServer and SciDB were run on Ubuntu 14.04 inside VirtualBox on

Windows 10. Note that ChronosServer is also capable to run natively on Windows,

unlike SciDB. The machine is equipped with SSD (OCZ Vertex 4). VirtualBox was

assigned 4 GB RAM and 2 CPU cores (Intel Core i5-3210M, 2.50 GHz per core).

SSD speed inside VirtualBox: 4573.28 MB/sec and 222.04 MB/sec (cached and buff-

ered disk reads respectively as reported by hdparm utility); 350 MB/sec disk write as

reported by dd utility.

ChronosServer has 100% Java code, ran one gate and one worker, Java 1.7.0_75,

OpenJDK IcedTea 2.6.4 64 bit, max heap size 978 MB (-Xmx), NCO v4.6.0 (May

2016). SciDB is mostly written on C++, v15.12 was used (latest, Apr. 2015) with

recommended parameters: 0 redundancy, 4 instances per machine, 4 execution and

prefetch threads, 1 prefetch queue size, 1 operator threads, 128 MB array cache, etc.).

Two types of query runs were evaluated: cold (query executed first time on given

data) and hot (repeated query execution on the same data). Time reported in Table 1 is

the average of three runtimes of the same query. Respective OS commands were is-

sued to free pagecache, dentries and inodes each time before executing cold query to

prevent data caching at various OS levels. Table 1 does not report cold and hot runs

for SciDB since it did not reveal any significant difference in runtime between them.

In contrast, ChronosServer does not cache data but benefits from native OS caching

and demonstrates significant speedup for hot runs. This is particularly useful for con-

tinues experiments with the same data. The need for this type of experiments occurs

quite often (e.g., tuning certain parameters, refer to section 5.5 for an example).

5.2 SciDB data import and ChronosServer data discovery

Importing data into SciDB involves considerable efforts on software development for

each dataset being considered. SciDB does not yet provide out-of-the-box import tool

from formats other than CSV. The overall import procedure is very time-consuming

and error-prone (both due to complicated raster formats and related possible coding

bugs as well as inherent floating point calculations). Lack of documentation and com-

plex query syntax (Appendix B) may elongate data import for several weeks.

For SciDB “data import” row, Table 1 reports only time taken to automatically im-

port U-wind speed data for 1979 year (50.2 MB) from NetCDF3 format into SciDB. It

does not report the time spent for Java program development to actually perform the

import. Importing V-wind speed for 1979 also takes approximately the same amount

of time. Estimate time is 14.76 hours to automatically import U- and V-wind speed

for 1979 – 2015. Thus, only U- and V-wind speed vectors for 1979 are considered for

performance evaluation in the next subsections. This small data sample turned out to

be representative for convincing results.

SciDB data import from NetCDF3 included reading original data file, preparing

string representation of 94 × 192 grid for each time step in a format ingestible by

SciDB, saving string to CSV file, and invoking SciDB tool to import grid from CSV.

On the contrary, to add new data under ChronosServer management, it is sufficient

to copy data files on a cluster node and add a short entry in ChronosServer XML file

specifying rules for file naming and a handful of some other information. Chronos-

Server will discover files as described in section 3.1. Worker discovers files at startup.

Table 1 “Data import” row for ChronosServer reports time of its “cold” and “hot”

startup. The former startup mode rediscovers completely from scratch all existing as

well as any newly added data. The latter mode assumes no new data were added since

previous startup. Both measured times include complete startup time of one gate and

one worker, metadata transfer from gate to worker (registered datasets), data discov-

ery by worker, logging and any other startup overhead.

ChronosServer is able to discover 803 datasets with total volume of 6.78 GB in file

formats NetCDF-3, -4, HDF-4, -5, Grib-2 (a collection of diverse satellite and climate

reanalysis products) in 20 and 8 seconds for cold and hot startups respectively. This is

36x and 90x faster than SciDB imports just 50.2 MB of data.

5.3 Simple statistics

Table 1 rows for max, min and average report time taken by the systems to calculate

maximum, minimum and average U-wind speed for 1979 year for each 94 × 192 grid

cell. Computation involves traversing 1460 time steps. ChronosServer is about 3 to 6

times faster than SciDB.

5.4 User-defined arithmetic expressions

Both ChronosServer and SciDB support user-defined arithmetic expressions that

could be applied to raster data. As an example, wind speed (ws) at each grid cell and

time point is calculated from its eastward (u) and northward (v) components as 𝑤𝑠 =

sqrt(𝑢2
 + 𝑣2

) (Fig. 2).

In this case, ChronosServer is 7 to 12 times faster than SciDB (Table 1).

Fig. 2. Wind speed vector (ws) and its eastward (u) and northward (v) speed vectors.

It is worth noting, that SciDB query for wind speed calculation is very complex (Ap-

pendix B), unlike that for ChronosServer (Appendix A).

5.5 Multidimensional chunking

Chunking is the process of partitioning original array (raster) onto a set of smaller

subarrays called chunks (Fig. 3). Chunks are autonomous, possibly compressed arrays

with contiguous storage layout. A chunk is usually read/written completely from/to

disk in one request to storage subsystem. Chunking is one of the classical approaches

to significantly accelerate disk I/O when only a portion of raster is read. Consider

reading a 6×2 slice from a 2D array (Fig. 3). For a row-major storage layout, two

vertically adjacent cells are located far apart each other. A possible solution is to read

6 portions sized 1×2 which requires 6 I/O requests and disk seeks (Fig. 3a). For a

compressed array, much larger part of it might be required to be read and uncom-

pressed before getting the requested portion. In contrast, only chunks containing re-

quired data are read from disk from a chunked raster. However, inappropriate chunk

shape may result in large I/O overhead (Fig. 3b). Good chunk shape allows to reduce

communication with storage layer, disk seeks and I/O volume (Fig. 3c).

Fig. 3. Chunking: row-major storage layout, read 6×2 slice

Since many raster operations are mostly I/O bound [28], chunk shape is one of the

crucial performance parameters for a dataset [34]. Chunk shape depends on data char-

acteristics and workload. Optimal chunk shape usually does not exist for all access

patterns. It is also difficult to guess good chunk shape a priori: chunk shape is often

tuned experimentally. Thus, raster DBMS must be capable to quickly alter chunk

shape in order to support experimentation as well as to adapt to dynamic workloads.

To estimate chunking speed of both systems, U-wind speed data for 1979 were

chunked with two different chunk shapes ts × lats × lons: 100×20×16 and 10×10×8,

ts, lats and lons are chunk sizes along time, latitude and longitude axes respectively.

ChronosServer is up to 193 times faster than SciDB (Table 1). Presented timings

are the average for 3 consecutive runs as mentioned earlier (each cold run precedes

OS cache clear). In practice, ChronosServer could be even faster: 973 ms execution

time (less than a second) could be obtained for a hot run leading to 228.3x speedup.

6 Conclusion

The paper presented new approach of delegating in-situ raster data processing to ex-

isting command line tools. The approach has numerous benefits and is under devel-

opment as an extension to ChronosServer – inherently distributed, file-based system

for high performance raster data dissemination [7, 8]. This paper also presented first

results on performance evaluation of ChronosServer against SciDB – one of the most

popular, distributed state-of-the-art raster DBMS [33–35]. Raster operations were

executed on 100.55 MB wind speed data from NCEP/DOE AMIP-II Reanalysis. This

was governed by SciDB which is unable to import large data volumes in a reasonable

time frame. However, this small data sample turned out to be sufficient for representa-

tive comparison. ChronosServer always outperforms SciDB. Also, query syntax of

ChronosServer is much easier and cleaner compared to SciDB. Max, min and average

operations are 3x to 6x faster, user-defined arithmetic expression was shown to be 7x

to 12x faster while altering 3D chunk shape is about 33x to 228.3x faster.

Acknowledgements. This work was partially supported by Russian Foundation for

Basic Research (grant #16-37-00416).

A Appendix. ChronosServer queries

Max U-wind speed (section 5.3):

ncap2 -alias u,r2.wind.10m.u

 -alias umax,r2.wind.10m.uv.umax

 -s "$(umax)=$(u).max($time)"

Calculate wind speed (section 5.4):

ncap2 -alias u,r2.wind.10m.u

 -alias v,r2.wind.10m.v

 -alias ws,r2.wind.10m.uv.ws

 -s "$(ws)=sqrt($(u)*$(u) + $(v)*$(v));"

Alter chunk shape to 10×10×8 (section 5.5):

ncks -4 --cnk_map dmn --cnk_plc g2d --cnk_dmn time,10

 --cnk_dmn lat,10 --cnk_dmn lon,8

 r2.wind.u10m.u r2.wind.u10m_ch10x10x8

B Appendix. SciDB queries

Initial SciDB array for U-wind speed:

r2_u10m<value:float>

[time=0:*,1,0,lat=0:93,94,0,lon=0:191,192,0]

Max U-wind speed (section 5.3):

store(aggregate(r2_u10m, max(value), lat, lon),

r2_u10m_max);

Calculate wind speed (section 5.4):

store(project(apply(join(r2_u10m, r2_v10m), ws,

float(sqrt(r2_u10m.value * r2_u10m.value + r2_v10m.value

* r2_v10m.value))), ws), r2_ws10m);

Alter chunk shape to 10×10×8 (section 5.5):

store(redimension(r2_u10m, <value:float>

[time=0:*,10,0,lat=0:93,10,0,lon=0:191,8,0]),

r2_u10m_10x10x8);

According to the answer of SciDB developers on their forum (question posted by the

author of this paper in August 2016), above query is currently the fastest way to alter

chunk size in SciDB: http://forum.paradigm4.com/t/fastest-way-to-alter-chunk-size/

References

1. Launching DigitalGlobe's Maps API | Mapbox,

https://www.mapbox.com/blog/digitalglobe-maps-api/

2. Grawinkel, M. et al.: Analysis of the ECMWF Storage Landscape. In: 13th USENIX Con-

ference on File and Storage Technologies, p. 2, February 16–19 (2015), Santa Clara, CA,

https://usenix.org/system/files/login/articles/login_june_18_reports.pdf

3. GeoTIFF, http://trac.osgeo.org/geotiff/

4. ImageMagic: History. http://imagemagick.org/script/history.php

5. NCO Homepage, http://nco.sourceforge.net/

6. The Orfeo ToolBox on Open Hub, https://www.openhub.net/p/otb

7. Rodriges Zalipynis, R.A.: ChronosServer: real-time access to “native” multi-terabyte ret-

rospective data warehouse by thousands of concurrent clients. Informatics, cybernetics and

computer engineering, vol. 14 (188), pp. 151–161 (2011)

8. ChronosServer, http://www.wikience.org/chronosserver/

9. Chapter 5. Raster Data Management, Queries, and Applications,

http://postgis.net/docs/manual-2.2/using_raster_dataman.html

10. Baumann, P., Dumitru, A., Merticariu, V.: The Array Database That Is Not a Database:

File Based Array Query Answering in rasdaman. SSTD 2013, LNCS, vol. 8098, pp. 478–

483, Springer, Heidelberg (2013)

http://forum.paradigm4.com/t/fastest-way-to-alter-chunk-size/

11. RasDaMan features, http://www.rasdaman.org/wiki/Features

12. NetCDF. http://www.unidata.ucar.edu/software/netcdf/docs/

13. Wang, Y., Nandi, A., Agrawal, G.: SAGA: Array Storage as a DB with Support for Struc-

tural Aggregations. In: SSDBM’14, June 30 - July 02, (2014)

14. Wang, L. et al.: Clustered workflow execution of retargeted data analysis scripts. In:

CCGRID 2008

15. Buck, J.B., Watkins, N., LeFevre, J., Ioannidou, K., Maltzahn, C., Polyzotis, N., Brandt,

S.: SciHadoop: Array-based Query Processing in Hadoop. In: Proc. of SC (2011)

16. Wang, Y., Jiang, W., Agrawal, G.: SciMATE: A Novel MapReduce-Like Framework for

Multiple Scientific Data Formats. In: Proc. of CCGRID, pp. 443–450, May (2012)

17. Malensek, M., Pallickara, S.: Galileo: A Framework for Distributed Storage of High-

Throughput Data Streams. In: Proc. of the 4th IEEE/ACM Intl. Conf. on Utility and Cloud

Computing (2011).

18. ArcGIS for Server | Image Extension, http://www.esri.com/software/arcgis/arcgisserver/

extensions/image-extension

19. Oracle Spatial and Graph, http://www.oracle.com/technetwork/database/options

/spatialandgraph/overview/index.html

20. Georaster: Import very large images with sdo_ge... | Oracle Community,

https://community.oracle.com/thread/3820691?start=0&tstart=0

21. Paradigm4: Creators of SciDB, http://scidb.org/

22. Interpolation - SciDB usage - SciDB Forum,

http://forum.paradigm4.com/t/interpolation/1283

23. TileDB - Scientific data management made fast and easy, http://istc-

bigdata.org/tiledb/index.html

24. Hadoop Streaming, wiki.apache.org/hadoop/HadoopStreaming

25. GitHub - Paradigm4/streaming: Prototype Hadoop streaming-like SciDB API,

https://github.com/Paradigm4/streaming

26. Zhang, Y. et al.: SciQL, Bridging the Gap between Science and Relational DBMS. In:

IDEAS11, September 21-23, Lisbon, Portugal (2011).

27. NCEP-DOE AMIP-II Reanalysis,

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html

28. Zender, C.S.: Analysis of self-describing gridded geoscience data with netCDF Operators

(NCO). Environmental Modelling & Software, vol. 23, pp. 1338–1342 (2008)

29. Zender, C.S., Mangalam, H.: Scaling properties of common statistical operators for grid-

ded datasets. Intl. J. of High Performance Computing Applications, vol. 21 (4), pp. 458–

498 (2007).

30. Geospatial raster data processing, http://rgeo.wikience.org/pdf/slides/rgeo-course-04-

raster_processing.pdf

31. Wickham, H.: The split-apply-combine strategy for data analysis. Journal of Statistical

Software, vol. 40, pp. 1–29 (2011)

32. Yang, H.C., Dasdan, A., Hsiao, R.L., Parker, D.S.: Map-reduce-merge: Simplified rela-

tional data processing on large clusters. In: ACM SIGMOD, June 12–14, Beijing (2007)

33. Stonebraker, M., Brown, P., Zhang, D., Becla, J.: SciDB: A Database Management System

for Applications with Complex Analytics, Comput. Sci. Eng., vol. 15 (54), (2013)

34. Cudre-Mauroux, P., et al.: A demonstration of SciDB: A science-oriented DBMS. Pro-

ceedings of VLDB, Endowment, vol. 2 (2), pp. 1534–1537 (2009)

35. Planthaber, G., Stonebraker, M., Frew, J.: EarthDB: scalable analysis of MODIS data us-

ing SciDB. In: BigSpatial, pp. 11–19, (2012)

http://www.rasdaman.org/wiki/Features

